
 1

The TeraPaths API

1. Authentication/Authorization

The TeraPaths API uses mutual authentication with X.509 certificates.

Currently, the certificates are DOE issued. A java client to the API needs to have a keystore and

a truststore setup properly and include code such as the following:

// Begin SSL security stuff...

try {

 System.setProperty("javax.net.ssl.keyStoreType", "JKS");

 System.setProperty("javax.net.ssl.keyStore", keyStoreDir + "terapathsClientKeystore.jks");

 System.setProperty("javax.net.ssl.keyStorePassword", keyStorePassword);

 System.setProperty("javax.net.ssl.trustStoreType", "JKS");

 System.setProperty("javax.net.ssl.trustStore", keyStoreDir + "terapathsClientTruststore.jks");

 System.setProperty("javax.net.ssl.trustStorePassword", trustStorePassword);

 } catch (Exception e) {

 System.out.println("Failed to set SSL properties...");

 e.printStackTrace();

 }

 // End SSL security stuff

The keystore contains the user’s certificate chain. The private key password needs to be the same

as the keystore password.

The truststore contains the public keys of the TeraPaths servers and the DOE CA.

Additionally, a user’s DN needs to be included in the TeraPaths VO and assigned a suitable role.

 2

2. Basic methods

tpsAPI_reserve

ReservationData tpsAPI_reserve(ReservationData request)

Creates a set of temporary resource reservations for a virtual path between the source and

destination with the specified QoS and bandwidth parameters. Depending on system

configuration, this set may involve reservations in some or all domains along the path between

source and destination. The reservation set has to be committed within 60 seconds otherwise the

resources are released.

Parameters:
A ReservationData object with information regarding the start time and duration of the

reservation, the bandwidth and QoS class, source and destination addresses and port numbers.

Returns:

A ReservationData object with the details of the successfully reserved reservations or null if the

reservation failed. If modification is allowed and a suitable slot is found the start time will be

adjusted accordingly.

Throws:

java.rmi.RemoteException

tpsAPI_commit

boolean tpsAPI_commit(ReservationData rd)

Commits a temporary reservation set after a reserve call. The commit call confirms the

reservation of resources allocated temporarily during the reserve phase.

Parameters:
A ReservationData object with the id field set to the id of the reservation to be commited.

Returns:

true if the reservation is committed successfully, false otherwise.

Throws:

java.rmi.RemoteException

tpsAPI_cancel

boolean tpsAPI_cancel(ReservationData rd)

Cancels a reservation set with the reservation id specified in the reservationData input.

Parameters:

A ReservationData object with the id field set to the id of the reservation to be cancelled.

Returns:

true if the reservation was cancelled successfully, false otherwise.

Throws:

java.rmi.RemoteException

 3

3. Auxiliary methods

tpsAPI_getBandwidths

Bandwidths[] tpsAPI_getBandwidths(String srcIp, String destIp)

Returns the name and maximum reservable bandwidth of all defined traffic classes available at

the specified source and destination.

Parameters:

String srcIp – source IP or CIDR address/address list

String destIp – destination IP or CIDR address/address list

Returns:

Names and maximum reservable bandwidths of traffic classes in a Bandwidths object.

Bandwidths[0] Information about local bandwidth classes.

Bandwidths[1] left empty by convention

Bandwidths[2] Information about remote bandwidth classes.

Throws:

java.rmi.RemoteException

tpsAPI_getPath

String[] tpsAPI_getPath(String srcIp, String destIp)

Returns the URLs of network controllers that must be contacted to setup a virtual path between

the specified source and the destination.

Parameters:

String srcIp – source IP or CIDR address/address list

String destIp – destination IP or CIDR address/address list

Returns:

A String array containing three URLs:

String[0] local TeraPaths API URL

String[1] WAN controller URL

String[2] remote TeraPaths API URL

Throws:
java.rmi.RemoteException

 4

4. Privileged methods (system communication)

tpsAPI_LocalCancel

boolean tpsAPI_LocalCancel(String id, String userDN, String userCA) throws

java.rmi.RemoteException

The Function can only be invoked by privileged users (remote TeraPaths Instance or Network

Administrators) to cancel a reservation (local domain only).
Parameters:
id – the id of the reservation to be locally cancelled.
userDN – the DN of the user that initiated this cancel.
userCA – the CA that issued the users certificate.
Returns:
true if the reservation was successfully cancelled locally, false otherwise.
Throws:
java.rmi.RemoteException

tpsAPI_LocalCommit

boolean tpsAPI_LocalCommit(String id, String userDN, String userCA) throws

java.rmi.RemoteException

The function can only be invoked by privileged users (remote TeraPaths Instance or Network

Administrators) to commit a reservation (local domain only).
Parameters:
id – the id of the reservation to be locally committed.
userDN – the DN of the user that initiated this commit.
userCA – the CA that issued the users certificate.
Returns:
true if the reservation was successfully committed locally, false otherwise.
Throws:
java.rmi.RemoteException

tpsAPI_LocalRemove

boolean tpsAPI_LocalRemove(String id, String userDN, String userCA) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this

function is used to remove a reservation from the database (local domain only).
Parameters:
id – the id of the reservation to be locally removed.
userDN – the DN of the user that initiated this remove.
userCA – the CA that issued the users certificate.
Returns:
true if the reservation was successfully removed locally, false otherwise.
Throws:
java.rmi.RemoteException

 5

tpsAPI_LocalReserve

ReservationData tpsAPI_LocalReserve(ReservationData rd) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this

function creates a temporary reservation for a virtual path across the local domain.
Parameters:
A reservationData object set to all the appropriate reservation specifications such as start time,
duration, QoS class, bandwidth, source and destination IP/CIDR addresses/lists and port
numbers.
Returns:
A reservationData object with assigned reservation id (if not already assigned), and adjusted start
time and duration (if modification is allowed, necessary, and possible).
Throws:
java.rmi.RemoteException

tpsAPI_LocalStart

boolean tpsAPI_LocalStart(String id, String userDN, String userCA) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this method

is the final step in submitting a reservation. It initializes the activation and deactivation tasks.
Parameters:
id – the id of the reservation to be locally started.
userDN – the DN of the user that initiated this remove.
userCA – the CA that issued the users certificate.
Returns:
true if the reservation was successfully started, false otherwise.
Throws:
throws java.rmi.RemoteException

tpsAPI_getLocalBandwidths

Bandwidth[] tpsAPI_getLocalBandwidths() throws java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this method

returns details of the local reservation bandwidth classes.
Parameters:
None
Returns:
An array of Banwidth objects, which hold the details for each of the bandwidth class supported
by the local site.
Throws:
java.rmi.RemoteException

 6

tpsAPI_addRelatedReservationId

boolean tpsAPI_addRelatedReservationId(String rid, String rrid, boolean replace) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this

function updates the relatedReservation entry for the specified reservation in the table.
Parameters:
String rid – the id of the reservation whose related reservations entry is to be modified.
String rrid – the id of the related reservation to be added to or replace the entry in the database.
boolean replace – flag set when you want to overwrite the existing entry.
Returns:
true if the database was successfully updated, false otherwise.
Throws:
java.rmi.RemoteException

tpsAPI_getRelatedReservationIds

String tpsAPI_getRelatedReservationIds(String id) throws java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) this

function provides information regarding the WAN reservations associated with the reservation

identified by the id.
Parameters:
id – the id of the reservation whose related reservation ids are required.
Returns:
A comma-delimited string containing the list of related reservations.
Throws:
java.rmi.RemoteException

tpsAPI_getReservationData

ReservationData tpsAPI_getReservationData(String id) throws java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) or the

owner of this reservation to get the details of the reservation with the corresponding id.
Parameters:
id – the id of the reservation whose information is required.
Returns:
The details of the reservation identified by the reservation id in a reservationData object.
Throws:
java.rmi.RemoteException

 7

tpsAPI_lookupUser

UserData tpsAPI_lookupUser(String userDN, String userCA) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) to lookup

user data in the local database.
Parameters:
userDN – the DN of the user.
userCA – the CA that issued the users certificate.
Returns:
A userData object with the credentials of the user.
Throws:
java.rmi.RemoteException

getAllReservationsForClass

ReservationData[] getAllReservationsForClass(ReservationData rd) throws

java.rmi.RemoteException

Invoked by privileged users (remote TeraPaths Instance or Network Administrators) to retrieve

reservation data from the local database. This method is intended to be used by the TeraPaths

web interface.
Parameters:
rd – a reservationData object is used to pass search parameters.
Returns:
An array of reservationData objects containing information on reservations existing in the local
database.
Throws:
java.rmi.RemoteException

 8

DATA TYPES

Class ReservationData

Holds all the information about a particular reservation

class ReservationData
{
 private tpsLib.Who who;
 private String userName;
 private String protocol;
 private String srcIp;
 private String srcPorts;
 private String srcPortMin;
 private String srcPortMax;
 private String srcMapping;
 private String destIp;
 private String destPorts;
 private String destPortMin;
 private String destPortMax;
 private String destMapping;
 private String Mapping;
 private tpsLib.Bandwidth bandwidth;
 private long startTime;
 private long dTMinus;
 private long dTPlus;
 private int modifyReservation;
 private long startTimeMin;
 private long startTimeMax;
 private long duration;
 private String id;
 private String srcName;
 private String destName;
 private long timeout;
 private String status;
 private String direction;
 private String relatedReservationIds;

 …

}

 9

Field Type Description Value Comments

Who Who user identity internal; see class Who

username String user name input; obsolete

protocol String communication protocol list tcp/udp input

srcIp String source IP address list aaa.bbb.ccc.ddd/xx (CIDR block) input

srcPorts String Source ports list x/y-z (0 65535) input

srcPortMin int source port range start input; obsolete

srcPortMax int source port range end input; obsolete

srcMapping String source mapping mode (ip-ports) strict/combination input

destIp String destination IP address aaa.bbb.ccc.ddd/xx (CIDR block) input

dstPorts String destination ports list x/y-z (0 65535) input

destPortMin int destination port range start input; obsolete

destPortMax int destination port range end input; obsolete

destMapping String destination mapping mode (ip-ports) strict/combination input

Mapping String source-destination mapping mode strict/combination input

bandwidth Bandwidth QoS service class input; see class Bandwidth

startTime long reservation start time epoch time (milliseconds) input

dTMinus long tolerance period before startTime experimental use (must set to 0)

dTPlus long tolerance period after startTime experimental use (must set to 0)

modifyReservation int reservation modification on/off 0/1 input

startTimeMin long earliest acceptable startTime epoch time (milliseconds) input; optional

startTimeMax long latest acceptable startTime epoch time (milliseconds) input; optional

duration long reservation duration in seconds seconds input

id String reservation identity tag internal use; input (commit/cancel)

srcName String source host name internal use

destName String destination host name internal use

timeout long reservation end time internal use

status String reservation status internal use

direction String reservation direction unidirectional/bidirectional input

relatedReservationIds String related WAN reservation tags internal use

 10

The mapping fields affect the correspondence of addresses to ports and sources to destinations.
strict correspondence is one-on-one, combination will make the system figure out all possible
combinations.
For example:
x: s or d for source or destination
n = 1,2,…
ixn denotes a CIDR address block
pxn denotes a port or a “-“ delimited port range
(ixn,pxn) denotes a flow group source or destination (fs or fd)
[fs,fd] denotes a flow group (f/fg)
{fg,fg,…} denotes the set of flow groups affected by the reservation

srcIp=is1, is2
srcPorts=ps1,ps2
srcMapping=strict
destIp=id1,id2
destPorts=pd1,pd2
destMapping=strict
Mapping=strict

resolves to {[(is1,ps1),(id1,pd1)],[(is2,ps2),(id2,pd2)]}

srcIp=is1, is2
srcPorts=ps1,ps2
srcMapping=strict
destIp=id1,id2
destPorts=pd1,pd2
destMapping=strict
Mapping=combination

resolves to {[(is1,ps1),(id1,pd1)],[(is1,ps1),(id2,pd2)],[(is2,ps2),(id1,pd1)],[(is2,ps2),(id2,pd2)]}

Setting all mappings to combination in the above example results in a set with 16 flow groups
Sn error occurs if the elements are not enough for a strict match.

 11

Class Bandwidth

QoS class name and bandwidth to allocate

public class Bandwidth
{
 private String className;
 private long bandwidth;

}

Class Who

Holds user credentials from X.509 certificate. The credentials are extracted from the SSL

exchange and filled in automatically.

public class Who
{
 private String name;
 private String DN;
 private String CA;

 …

}

Field Type Description Value Comments

Name String QoS class name obsolete

DN String Certificate DN internal use

CA String Certificate CA internal use

Field Type Description Value Comments

className String QoS class name BE/EF (others possible) input

bandwidth long bandwidth bits per second input

